Studying online

There are now 2 possible online modes for units:

Units with modes Online timetabled and Online flexible are available for any student to self-enrol and study online.

Click on an offering mode for more details.

Unit Overview

Description

This unit introduces fundamental concepts of Bayesian statistics and illustrates how to apply them to various areas of scientific research. Probabilistic programming languages (WinBugs, JAGS and/or Stan) are introduced, and their interfaces to the statistical computing and graphics environment R are discussed. These languages are used, either directly or via their R interface, to fit statistical models within a Bayesian framework to real-world examples from many disciplines such as engineering, science (e.g. agricultural, biological, environmental, medical and physical), social sciences, economics, finance and astronomy.

Credit
6 points
Offering
(see Timetable)
AvailabilityLocationMode
Semester 2UWA (Perth)Face to face
Details for undergraduate courses
  • Level 3 core unit in the Data Science major sequence
  • Level 3 option in the Statistics major sequence
  • Level 3 elective
Outcomes

Students are able to (1) understand basic concepts of Bayesian statistics; (2) fit Bayesian models to their data using modern probabilistic programming languages; (3) critically assess fitted models; and (4) interpret and communicate results of Bayesian data analyses.

Assessment

Indicative assessments in this unit are as follows: (1) assignments; (2) in-semester tests; and (3) a final examination. Further information is available in the unit outline.



Student may be offered supplementary assessment in this unit if they meet the eligibility criteria.

Unit Coordinator(s)
Associate Professor Berwin Turlach
Unit rules
Prerequisites

Course Enrolment in
the MJD-DATSC Data Science major
or the MJD-QTMTD Quantitative Methods major
and STAT2401 Analysis of Experiments
and STAT2402 Analysis of Observations
or STAT2062 Fundamentals of Probability with Applications
Incompatibility
STAT4066 Bayesian Computing and Statistics
Contact hours
Lectures: 2-hours per week
Computer Labs: 2-hours per week
Note
STAT3405 will be offered in Semester 2 from 2022.
  • The availability of units in Semester 1, 2, etc. was correct at the time of publication but may be subject to change.
  • All students are responsible for identifying when they need assistance to improve their academic learning, research, English language and numeracy skills; seeking out the services and resources available to help them; and applying what they learn. Students are encouraged to register for free online support through GETSmart; to help themselves to the extensive range of resources on UWA's STUDYSmarter website; and to participate in WRITESmart and (ma+hs)Smart drop-ins and workshops.
  • Visit the Essential Textbooks website to see if any textbooks are required for this Unit. The website is updated regularly so content may change. Students are recommended to purchase Essential Textbooks, but a limited number of copies of all Essential Textbooks are held in the Library in print, and as an ebook where possible. Recommended readings for the unit can be accessed in Unit Readings directly through the Learning Management System (LMS).
  • Contact hours provide an indication of the type and extent of in-class activities this unit may contain. The total amount of student work (including contact hours, assessment time, and self-study) will approximate 150 hours per 6 credit points.